On monogenity of certain number fields defined by trinomials
نویسندگان
چکیده
Let $K=\mathbb{Q}(\theta)$ be a number field generated by complex root $\theta$ of monic irreducible trinomial $F(x) = x^n+ax+b \in \mathbb{Z}[x]$. There is an extensive literature on monogenity fields defined trinomials. For example, Gaál studied the multi-monogenity sextic Jhorar and Khanduja provide some explicit conditions $a$, $b$ $n$ for $(1, \theta, \ldots, \theta^{n-1})$ to power integral basis in $K$. But, if does not generate $\mathbb{Z}_K$, then Jhorar's Khanduja's results cannot answer In this paper, based Newton polygon techniques, we deal with problem non-monogenity More precisely, when give sufficient $n$, $a$ $K$ monogenic. $n\in {5, 6, 3^r, 2^k\cdot 2^s\cdot 3^k+1}$, explicitly infinite families these that are Finally, illustrate our computational examples.
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولOn a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator
In this paper we obtain coefficient characterization, extreme points and distortion bounds for the classes of harmonic $p-$valent functions defined by certain modified operator. Some of our results improve and generalize previously known results.
متن کاملOn Quadratic Fields Generated by Discriminants of Irreducible Trinomials
A. Mukhopadhyay, M. R. Murty and K. Srinivas have recently studied various arithmetic properties of the discriminant ∆n(a, b) of the trinomial fn,a,b(t) = t n + at+ b, where n ≥ 5 is a fixed integer. In particular, it is shown that, under the abc-conjecture, for every n ≡ 1 (mod 4), the quadratic fields Q (√ ∆n(a, b) ) are pairwise distinct for a positive proportion of such discriminants with i...
متن کاملOn Certain Cohomological Invariants of Algebraic Number Fields
We see the Poincaré series from a cohomological point of view and apply the idea to a finite group G acting on any commutative ring R with unity. For a 1cocycle c of G on the unit group R×, we define a |G|-torsion module Mc/Pc, which is independent of the choice of representatives of the cohomology class γ = [c]. We are mostly interested in determining Mc/Pc where G is the Galois group of a fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Functiones et Approximatio Commentarii Mathematici
سال: 2022
ISSN: ['0208-6573', '2080-9433']
DOI: https://doi.org/10.7169/facm/1987